21 research outputs found

    Boosting BCG with recombinant modified vaccinia ankara expressing antigen 85A: Different boosting intervals and implications for efficacy trials

    Get PDF
    Objectives. To investigate the safety and immunogenicity of boosting BCG with modified vaccinia Ankara expressing antigen 85A (MVA85A), shortly after BCG vaccination, and to compare this first with the immunogenicity of BCG vaccination alone and second with a previous clinical trial where MVA85A was administered more than 10 years after BCG vaccination. Design. There are two clinical trials reported here: a Phase I observational trial with MVA85A; and a Phase IV observational trial with BCG. These clinical trials were all conducted in the UK in healthy, HIV negative, BCG naı¨ve adults. Subjects were vaccinated with BCG alone; or BCG and then subsequently boosted with MVA85A four weeks later (short interval). The outcome measures, safety and immunogenicity, were monitored for six months. The immunogenicity results from this short interval BCG prime–MVA85A boost trial were compared first with the BCG alone trial and second with a previous clinical trial where MVA85A vaccination was administered many years after vaccination with BCG. Results. MVA85A was safe and highly immunogenic when administered to subjects who had recently received BCG vaccination. When the short interval trial data presented here were compared with the previous long interval trial data, there were no significant differences in the magnitude of immune responses generated when MVA85A was administered shortly after, or many years after BCG vaccination. Conclusions. The clinical trial data presented here provides further evidence of the ability of MVA85A to boost BCG primed immune responses. This boosting potential is not influenced by the time interval between prior BCG vaccination and boosting with MVA85A. These findings have important implications for the design of efficacy trials with MVA85A. Boosting BCG induced anti-mycobacterial immunity in either infancy or adolescence are both potential applications for this vaccine, given the immunological data presented here. Trial Registration. ClinicalTrials.Oxford University was the sponsor for all the clinical trials reported here

    A Phase I study evaluating the safety and immunogenicity of MVA85A, a candidate TB vaccine, in HIV-infected adults

    Get PDF
    Objectives Control of the tuberculosis (TB) epidemic is a global health priority and one that is likely to be achieved only through vaccination. The critical overlap with the HIV epidemic requires any effective TB vaccine regimen to be safe in individuals who are infected with HIV. The objectives of this clinical trial were to evaluate the safety and immunogenicity of a leading candidate TB vaccine, MVA85A, in healthy, HIV-infected adults. Design This was an open-label Phase I trial, performed in 20 healthy HIV-infected, antiretroviral-naïve subjects. Two different doses of MVA85A were each evaluated as a single immunisation in 10 subjects, with 24 weeks of follow-up. The safety of MVA85A was assessed by clinical and laboratory markers, including regular CD4 counts and HIV RNA load measurements. Vaccine immunogenicity was assessed by ex vivo interferon γ (IFN-γ) ELISpot assays and flow-cytometric analysis. Results MVA85A was safe in subjects with HIV infection, with an adverse-event profile comparable with historical data from previous trials in HIV-uninfected subjects. There were no clinically significant vaccine-related changes in CD4 count or HIV RNA load in any subjects, and no evidence from qPCR analyses to indicate that MVA85A vaccination leads to widespread preferential infection of vaccine-induced CD4 T cell populations. Both doses of MVA85A induced an antigen-specific IFN-γ response that was durable for 24 weeks, although of a lesser magnitude compared with historical data from HIV-uninfected subjects. The functional quality of the vaccine-induced T cell response in HIV-infected subjects was remarkably comparable with that observed in healthy HIV-uninfected controls, but less durable. Conclusion MVA85A is safe and immunogenic in healthy adults infected with HIV. Further safety and efficacy evaluation of this candidate vaccine in TB- and HIV-endemic areas is merited

    Increasing frailty is associated with higher prevalence and reduced recognition of delirium in older hospitalised inpatients: results of a multi-centre study

    Get PDF
    Purpose: Delirium is a neuropsychiatric disorder delineated by an acute change in cognition, attention, and consciousness. It is common, particularly in older adults, but poorly recognised. Frailty is the accumulation of deficits conferring an increased risk of adverse outcomes. We set out to determine how severity of frailty, as measured using the CFS, affected delirium rates, and recognition in hospitalised older people in the United Kingdom. Methods: Adults over 65 years were included in an observational multi-centre audit across UK hospitals, two prospective rounds, and one retrospective note review. Clinical Frailty Scale (CFS), delirium status, and 30-day outcomes were recorded. Results: The overall prevalence of delirium was 16.3% (483). Patients with delirium were more frail than patients without delirium (median CFS 6 vs 4). The risk of delirium was greater with increasing frailty [OR 2.9 (1.8–4.6) in CFS 4 vs 1–3; OR 12.4 (6.2–24.5) in CFS 8 vs 1–3]. Higher CFS was associated with reduced recognition of delirium (OR of 0.7 (0.3–1.9) in CFS 4 compared to 0.2 (0.1–0.7) in CFS 8). These risks were both independent of age and dementia. Conclusion: We have demonstrated an incremental increase in risk of delirium with increasing frailty. This has important clinical implications, suggesting that frailty may provide a more nuanced measure of vulnerability to delirium and poor outcomes. However, the most frail patients are least likely to have their delirium diagnosed and there is a significant lack of research into the underlying pathophysiology of both of these common geriatric syndromes

    Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK.

    Get PDF
    BACKGROUND: A safe and efficacious vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), if deployed with high coverage, could contribute to the control of the COVID-19 pandemic. We evaluated the safety and efficacy of the ChAdOx1 nCoV-19 vaccine in a pooled interim analysis of four trials. METHODS: This analysis includes data from four ongoing blinded, randomised, controlled trials done across the UK, Brazil, and South Africa. Participants aged 18 years and older were randomly assigned (1:1) to ChAdOx1 nCoV-19 vaccine or control (meningococcal group A, C, W, and Y conjugate vaccine or saline). Participants in the ChAdOx1 nCoV-19 group received two doses containing 5 × 1010 viral particles (standard dose; SD/SD cohort); a subset in the UK trial received a half dose as their first dose (low dose) and a standard dose as their second dose (LD/SD cohort). The primary efficacy analysis included symptomatic COVID-19 in seronegative participants with a nucleic acid amplification test-positive swab more than 14 days after a second dose of vaccine. Participants were analysed according to treatment received, with data cutoff on Nov 4, 2020. Vaccine efficacy was calculated as 1 - relative risk derived from a robust Poisson regression model adjusted for age. Studies are registered at ISRCTN89951424 and ClinicalTrials.gov, NCT04324606, NCT04400838, and NCT04444674. FINDINGS: Between April 23 and Nov 4, 2020, 23 848 participants were enrolled and 11 636 participants (7548 in the UK, 4088 in Brazil) were included in the interim primary efficacy analysis. In participants who received two standard doses, vaccine efficacy was 62·1% (95% CI 41·0-75·7; 27 [0·6%] of 4440 in the ChAdOx1 nCoV-19 group vs71 [1·6%] of 4455 in the control group) and in participants who received a low dose followed by a standard dose, efficacy was 90·0% (67·4-97·0; three [0·2%] of 1367 vs 30 [2·2%] of 1374; pinteraction=0·010). Overall vaccine efficacy across both groups was 70·4% (95·8% CI 54·8-80·6; 30 [0·5%] of 5807 vs 101 [1·7%] of 5829). From 21 days after the first dose, there were ten cases hospitalised for COVID-19, all in the control arm; two were classified as severe COVID-19, including one death. There were 74 341 person-months of safety follow-up (median 3·4 months, IQR 1·3-4·8): 175 severe adverse events occurred in 168 participants, 84 events in the ChAdOx1 nCoV-19 group and 91 in the control group. Three events were classified as possibly related to a vaccine: one in the ChAdOx1 nCoV-19 group, one in the control group, and one in a participant who remains masked to group allocation. INTERPRETATION: ChAdOx1 nCoV-19 has an acceptable safety profile and has been found to be efficacious against symptomatic COVID-19 in this interim analysis of ongoing clinical trials. FUNDING: UK Research and Innovation, National Institutes for Health Research (NIHR), Coalition for Epidemic Preparedness Innovations, Bill & Melinda Gates Foundation, Lemann Foundation, Rede D'Or, Brava and Telles Foundation, NIHR Oxford Biomedical Research Centre, Thames Valley and South Midland's NIHR Clinical Research Network, and AstraZeneca

    Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK

    Get PDF
    Background A safe and efficacious vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), if deployed with high coverage, could contribute to the control of the COVID-19 pandemic. We evaluated the safety and efficacy of the ChAdOx1 nCoV-19 vaccine in a pooled interim analysis of four trials. Methods This analysis includes data from four ongoing blinded, randomised, controlled trials done across the UK, Brazil, and South Africa. Participants aged 18 years and older were randomly assigned (1:1) to ChAdOx1 nCoV-19 vaccine or control (meningococcal group A, C, W, and Y conjugate vaccine or saline). Participants in the ChAdOx1 nCoV-19 group received two doses containing 5 × 1010 viral particles (standard dose; SD/SD cohort); a subset in the UK trial received a half dose as their first dose (low dose) and a standard dose as their second dose (LD/SD cohort). The primary efficacy analysis included symptomatic COVID-19 in seronegative participants with a nucleic acid amplification test-positive swab more than 14 days after a second dose of vaccine. Participants were analysed according to treatment received, with data cutoff on Nov 4, 2020. Vaccine efficacy was calculated as 1 - relative risk derived from a robust Poisson regression model adjusted for age. Studies are registered at ISRCTN89951424 and ClinicalTrials.gov, NCT04324606, NCT04400838, and NCT04444674. Findings Between April 23 and Nov 4, 2020, 23 848 participants were enrolled and 11 636 participants (7548 in the UK, 4088 in Brazil) were included in the interim primary efficacy analysis. In participants who received two standard doses, vaccine efficacy was 62·1% (95% CI 41·0–75·7; 27 [0·6%] of 4440 in the ChAdOx1 nCoV-19 group vs71 [1·6%] of 4455 in the control group) and in participants who received a low dose followed by a standard dose, efficacy was 90·0% (67·4–97·0; three [0·2%] of 1367 vs 30 [2·2%] of 1374; pinteraction=0·010). Overall vaccine efficacy across both groups was 70·4% (95·8% CI 54·8–80·6; 30 [0·5%] of 5807 vs 101 [1·7%] of 5829). From 21 days after the first dose, there were ten cases hospitalised for COVID-19, all in the control arm; two were classified as severe COVID-19, including one death. There were 74 341 person-months of safety follow-up (median 3·4 months, IQR 1·3–4·8): 175 severe adverse events occurred in 168 participants, 84 events in the ChAdOx1 nCoV-19 group and 91 in the control group. Three events were classified as possibly related to a vaccine: one in the ChAdOx1 nCoV-19 group, one in the control group, and one in a participant who remains masked to group allocation. Interpretation ChAdOx1 nCoV-19 has an acceptable safety profile and has been found to be efficacious against symptomatic COVID-19 in this interim analysis of ongoing clinical trials

    The Evaluation of Memory T cell Responses Induced by a Novel Tuberculosis Vaccine

    No full text
    One approach to combat the devastating infectious diseases that are HIV/AIDS, malaria and tuberculosis, is the development ofT cell vaccines which induce cell-mediated immune responses against the causative intracellular pathogens. One of the candidate tuberculosis vaccines that has been developed as such is modified vaccinia Ankara expressing antigen 85A (MVA85A). MVA85A was designed to be used in combination with the only currently licensed tuberculosis vaccine (BCG), in a prime-boost vaccination strategy (BCG prime-MYA85A boost). Early Phase I studies have shown that this approach induced a large M tuberculosis-specific lymphocyte IFNy response measured in the periphery by ex vivo ELISpot in healthy UK volunteers. The IFNy response measured was greater than that induced by immunisation with the either of the two vaccines alone (BCG or MVA85A), and was largely comprised ofCD4+ T cells. No further details regarding other characteristics of the vaccine-induced immune response had been examined. As the BCG-MVA85A vaccine strategy progresses along the clinical trial and drug development pathway it will be important to characterise the BCG-MVA85A induced Immune response in greater detail. More detailed immunological studies may provide insight into a protective or non-protective vaccine-induced immune response and help to guide the selection of future vaccine candidates. This thesis presents a detailed immunological study of the functional and phenotypic characteristics of the BCG-MVA85A induced immune response. As previously documented an impressive CD4+ T cell response was induced by BCG-MVA85A vaccination. Antigen 85A-specific CD4+ T cells were polyfunctional (they produced IFNy, TNFa, IL-2 and MIP-l~ simultaneously); relatively non-terminally differentiated and showed robust proliferative potential. These characteristics are currently thought to be important in generating effective memory T cell populations. The peak proliferative response in CD4+ T cells was found to occur six months following MVA85A boosting vaccination. In addition to CD4+ T cells, M tuberculosis-specific CD8+ and y/b T cell responses were also detected following BCG-MVA85A vaccination. Although these populations were less polyfunctional than the CD4+ T cells, their detection is noteworthy since the induction of a multifaceted immune response by vaccination is highly likely to be advantageous in providing protection against tuberculosis disease. A comparison of IFNy detection methods revealed that future immunological studies should ideally include a combination of ex vivo and cultured assays, along with PBMC and whole blood based methods to ensure a thorough and multi-faceted evaluation of the immune response is achieved. In summary, the data presented in this thesis have provided novel insights into the multicomponent response profile of BCG-MVA85A in healthy individuals. Although it remains to be seen whether this profile represents a protective immune response, these data do support the continued development ofMVA85A as a novel tuberculosis vaccine.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Gene-microRNA interactions associated with antipsychotic mechanisms and the metabolic side effects of olanzapine

    No full text
    RATIONALE: Changes in the cortical expression of small non-coding microRNA (miRNA) have been observed in postmortem analysis of psychotic disorders. Antipsychotic drugs (APDs) are the most effective treatment option for these disorders and have been associated with changes in gene expression. MicroRNA regulate numerous genes involved in brain development and function. It is therefore plausible to question whether miRNA expression is also altered and hence whether they take part in the neuroleptic mechanism of action. OBJECTIVES: We sought to investigate whether treatment with APDs induces changes in miRNA expression and query the functional implications of such changes. Furthermore, we investigated the possible functional interplay of miRNA-gene regulatory interactions. METHOD: High-throughput miRNA profiling of the whole brain of C57BL/6 mice treated with haloperidol, olanzapine or clozapine for 7 days was performed. Functional analysis was conducted on the putative targets of altered microRNA. Significant miRNA-gene regulatory interactions were evaluated by the integration of genome-wide mRNA expression analysis using the Bayesian networks with splitting-averaging strategy and functional analysis conducted. RESULTS: Small subsets of miRNA were altered with each treatment with potential neurologically relevant influence. Metabolic pathways were enriched in olanzapine and clozapine treatments, possibly associated with their weight gain side effects. Neurologically and metabolically relevant miRNA-gene interaction networks were identified in the olanzapine treatment group. CONCLUSION: This study is the first to suggest a role for miRNA in the mechanism of APD action and the metabolic side effects of the atypical ADPs, and adds support for their consideration in pharmacogenomics
    corecore